Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project
  • Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One
  • TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon
  • NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions
  • Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System
  • Why Physics Dooms the “Green Hydrogen” Fuel Dream
  • NEOM Green Hydrogen Project 80% Completed
  • Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Analysis
Green Hydrogen H2 News

Modelling floating offshore wind turbine systems under extreme storm conditions

Arnes BiogradlijaBy Arnes Biogradlija22/05/20202 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

The offshore wind industry has experienced significant growth in recent years, and continues to expand both in the UK and worldwide. 

Nearly all offshore wind turbines installed to date are located in relatively shallow water, mounted on fixed bottom support structures. However, the number of suitable shallow water sites with high wind resources are limited, and hence it is necessary to expand wind turbine technology for deployment at deeper water sites. 

Floating offshore wind turbine (FOWT) systems offer an opportunity to achieve this expansion, and can potentially play a vital role in providing affordable and sustainable energy for the UK as part of a broad and balanced energy system.

In order for cost-competitive and reliable FOWTs to be developed, it is crucial that the complex hydrodynamic and aerodynamic interactions with the system are well understood. 

The survivability in storm conditions is of particular importance, since the FOWTs will be subject to concurrent attacks from strong wind, steep waves, rising water levels due to storm surge as well as the effects from the complex interplay between the underlying flow processes, e.g. wind induced currents and wave breaking.

Therefore, the aim of the project is to characterize and quantify extreme loading on FOWTs in a complex and harsh marine environment with strong wind, rising water level, significant wind-driven current, steep swell and wind waves, and the interactions between each of these parameters.

This will be achieved through numerical and physical modelling following specific objectives:

  • Increase understanding of the flow dynamics and interaction with FOWTs under complex environmental conditions, through a series of carefully configured wave tank tests.
  • Further development and validation of an integrated CFD model for the fully coupled analysis of the hydrodynamics and aerodynamics of FOWT structures under the action of both wind, waves, and mooring.
  • Optimization of the parallel efficiency of the hybrid CFD model through a new dynamic load balancing technique.
  • Characterization of the coupled effects of wind, current, and rising water level on large-scale wave evolution and extreme wave events including the onset of wave breaking in storm conditions.
  • Quantification of the extreme loading on FOWTs including effects of breaking waves and aeration under realistic environmental conditions through numerical and physical experiments.
Share. LinkedIn Twitter Facebook Email

Related Posts

Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

04/06/2025
Green Hydrogen - Pillar of European Industrial Policy but Not Without Challenges

Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges

03/06/2025
Rolls-Royce's Advanced Battery Storage System Fuels The Netherlands' Grid Stability

Rolls-Royce’s Advanced Battery Storage System Fuels The Netherlands’ Grid Stability

03/06/2025
hydrogen

What Elon Musk Really Thinks About Hydrogen

03/06/2025
Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

04/06/2025
NuScale's NRC Approval Sets Stage for America's Next Generation SMR Power Solutions

NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions

04/06/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.