Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • UK BESS Market Contracts 28% Amid Planning Pipeline Slowdown Despite 7GWh Milestone
  • Vanadium Ion Breakthrough: 98% Efficiency, 12,000-Cycle Battery Challenges Lithium Dominance in Grid Storage
  • Hydrogen Storage’s Hidden Environmental Costs: Scale and Production Methods Drive Lifecycle Impacts
  • German Steel Giants Abandon €3.3 Billion Hydrogen Projects Despite Record Subsidies
  • Arizona’s 1 GWh Beehive BESS Acquisition Highlights $12B Fund’s Grid Storage Strategy
  • Beyond the Green Transition: Simon Michaux’s Case for a Resource-Balanced Energy Future
  • ACWA Power Targets Multi-Gigawatt Green Hydrogen in Sarawak
  • EU Greenlights Mitsubishi-Bosch JV to Bolster EV Battery Services
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Asia

Breakthrough in hydrogen energy production, storage, and transportation

Arnes BiogradlijaBy Arnes Biogradlija18/07/20222 Mins Read
Facebook Twitter LinkedIn Telegram Email WhatsApp
Green Hydrogen H2 News
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

EPRO Advance Technology (EAT) – has revealed a breakthrough in green hydrogen energy generation and energy storage, unveiling what is thought to be the world’s simplest and least expensive method for delivering hydrogen.

This breakthrough method has the potential to accelerate the hydrogen economy by decades, turning hydrogen from the fuel of the future into the fuel of the present.

Si+ is an innovative porous silicon material created by EAT that can manufacture ultra-pure hydrogen on demand from a water source. Si+ can also function as a solid-state hydrogen generator that is compact, durable, and transportable.

It has the ability to tackle the significant issues of hydrogen storage, safe handling, and transportation, which have impeded the expansion of the hydrogen economy for decades.

As a reliable source of safe, on-demand energy, Si+ has numerous applications. It can permit the elimination of costly and polluting diesel backup generator sets, also known as ‘gensets.’

Si+ is a perfect alternative for marine fuel oil, which will be phased out within the next year, and provides a thermal energy storage option via exothermic heat generated during the Si+ hydrogen production reaction.
Si+ will support the widespread deployment of hydrogen fuel cell electric automobiles and airplanes fueled by hydrogen.

Si+ hydrogen refueling stations that generate hydrogen on demand locally can share the footprint of existing gasoline stations, thereby decreasing capital and operational costs.

“Si+ provides a reliable source of energy in contrast to intermittent renewable energy sources.” It is the first energy storage material with grid parity, according to Albert Lau, CEO of EAT. “Si+ technology has the potential to advance the hydrogen economy by decades,” Lau added.

Mr. Lau demonstrated on a webcast how Si+ may produce hydrogen from a water source. “The inert, vacuum-packed Si+ cartridges are comparable to coffee machine pods and capsules; only add water to activate the product!” he stated.

The manufacturing procedure utilizes underutilized electricity and emits no greenhouse gases. The raw material is metallurgical silicon, which can be derived from sand along with a carbon source or from recovered silicon from damaged or defunct solar panels that would otherwise be destined for a landfill.

Share. LinkedIn Twitter Facebook Email

Related Posts

hydrogen

Hydrogen Storage’s Hidden Environmental Costs: Scale and Production Methods Drive Lifecycle Impacts

18/08/2025
hydrogen

German Steel Giants Abandon €3.3 Billion Hydrogen Projects Despite Record Subsidies

18/08/2025
Beyond the Green Transition: Simon Michaux’s Case for a Resource-Balanced Energy Future

Beyond the Green Transition: Simon Michaux’s Case for a Resource-Balanced Energy Future

15/08/2025
Hydrogen

ACWA Power Targets Multi-Gigawatt Green Hydrogen in Sarawak

15/08/2025
hydrogen

India-Germany Alliance Targets Efficiency Gains in MW-Scale Hydrogen Production

15/08/2025
Energy

Gentari Breaks Ground on Maryvale Solar and Energy Storage Project in NSW

15/08/2025
Battery BESS

UK BESS Market Contracts 28% Amid Planning Pipeline Slowdown Despite 7GWh Milestone

18/08/2025
Vanadium

Vanadium Ion Breakthrough: 98% Efficiency, 12,000-Cycle Battery Challenges Lithium Dominance in Grid Storage

18/08/2025
hydrogen

Hydrogen Storage’s Hidden Environmental Costs: Scale and Production Methods Drive Lifecycle Impacts

18/08/2025
hydrogen

German Steel Giants Abandon €3.3 Billion Hydrogen Projects Despite Record Subsidies

18/08/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.