Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • US Green Hydrogen Extension Faces Economic Reality: Two-Year Window May Not Bridge Competitiveness Gap
  • India’s Energy Storage Market Breakthrough: Record 8.1 GWh Monthly Tender Volume Drives Tariff Competition to ₹3.13/Unit
  • Hyundai’s New Hydrogen Car Deal: Does It Solve the Real Problems?
  • Green Hydrogen Reality Check: Why 80% of EU Projects Face Cancellation This Decade
  • Future of Geothermal Energy Growth, Technology Breakthroughs
  • Australia’s Green Fertiliser Revolution: Inside the GEGHA Hydrogen & Ammonia Project
  • CATL Scales Battery Swapping Infrastructure with Eyes Set on Europe
  • Mineral Interactions Pose Hidden Risks to Geological Hydrogen Storage Integrity
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Green Hydrogen H2 News

Bacterial enzyme generates energy from atmospheric hydrogen

Anela DoksoBy Anela Dokso03/04/20233 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Applications like affordable and effective hydrogen fuel cells could benefit from an enzyme that catalytically transforms the hydrogen found in air into energy.

Unlike all other hydrogen-oxidizing catalysts, including platinum, the enzyme, which Australian researchers at Monash University in Australia were able to extract from a bacterium, is also not sensitive to oxygen.

Study team leader Chris Greening adds, “The hydrogenase enzyme, termed Huc, has such a high affinity for hydrogen that it is able to oxidise atmospheric amounts of hydrogen.” This is in contrast to all currently understood hydrogen-oxidizing catalysts, which are unable to consume hydrogen at ambient levels.

Since Greening’s PhD dissertation, or about nine years ago, the Monash team has been researching Huc. He was investigating with his colleagues how Mycobacterium smegmatis may endure for years without any organic food sources. According to Greening, this research resulted in the startling revelation that the bacterium actually survives on air.

In particular, in nutrient-poor environments like Antarctic soils, volcano craters, and the deep ocean, atmospheric hydrogen provides a reliable lifeline for the survival of many microorganisms. Atmospheric hydrogen is a ubiquitous, diffusible, and powerful energy source. Nevertheless, until today, the scientists were unsure of how the bacteria took use of the minute amounts of hydrogen in the air.

In the latest research, Greening and associates removed Huc from M. smegmatis. They demonstrated that Huc converts minute concentrations of H2 gas into electrical current with extraordinary efficiency while being insensitive to oxygen (which typically acts as a “poison” for hydrogen-oxidizing catalysts) by using advanced microscopy techniques like cryo-electron microscopy to determine its atomic structure and electric pathways, as well as by using electrochemistry. This is accomplished by combining the oxidation of ambient H2 with the hydrogenation of the respiratory electron transporter menaquinone. Narrow hydrophobic gas channels are then used to specifically bind the H2 while displacing the O2.

Huc is resistant to heat and can withstand temperatures of up to 80°C without losing its ability to produce energy. Because of this, it can endure the most difficult circumstances. Furthermore, Huc-producing bacteria are widespread, providing researchers with easy access to a reliable source of the enzyme.

The researchers say there is a lot of promise for this enzyme to be utilised as the foundation for hydrogen fuel cells, and they describe their discovery in Nature. Also, they speculate that the enzyme may have some uses in air-powered devices because it actually gathers energy from the air.

Share. LinkedIn Twitter Facebook Email

Related Posts

Hydrogen

Australia’s Green Fertiliser Revolution: Inside the GEGHA Hydrogen & Ammonia Project

01/08/2025
Battery

Tesla’s $4.3B South Korean Battery Deal Exposes Critical Supply Chain Vulnerabilities as Tariff Pressures Mount

30/07/2025
Hydrogen

BP’s Exit from Australia’s $55 Billion AREH Highlights Market Uncertainty in Large-Scale Green Hydrogen

29/07/2025
hydrogen

HBIS Launches Hydrogen-Reduced Steel Exports Amid EU CBAM Pressure

28/07/2025
hydrogen

Taranaki Pitches Hydrogen Future Despite Carbon Questions and Regulatory Hurdles

28/07/2025
Hydrogen

Towngas Bets on Hydrogen-Powered EV Charging Amid Global Pullback

28/07/2025
Green Hydrogen

US Green Hydrogen Extension Faces Economic Reality: Two-Year Window May Not Bridge Competitiveness Gap

04/08/2025
energy storage

India’s Energy Storage Market Breakthrough: Record 8.1 GWh Monthly Tender Volume Drives Tariff Competition to ₹3.13/Unit

04/08/2025
Hyundai

Hyundai’s New Hydrogen Car Deal: Does It Solve the Real Problems?

04/08/2025
green hydrogen

Green Hydrogen Reality Check: Why 80% of EU Projects Face Cancellation This Decade

04/08/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.