Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive
  • Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks
  • Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects
  • Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes
  • The Hydrogen Heating Mirage: Why Germany’s “H₂-Ready” Promise Risks Locking in High Costs and Low Returns
  • How Lyten’s Salvage Mission Could Upend Europe’s Battery Wars
  • Doug Wicks on Why Energy Innovation Is Broken—and How to Fix It
  • Cost and Policy Roadblocks Stall LEAG’s H2UB Boxberg Green Hydrogen Hub
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Europe
Green Hydrogen H2 News

Hydrogen generated by solar pixels

Arnes BiogradlijaBy Arnes Biogradlija20/06/20222 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Researchers from the University of Cambridge and Imperial College London have utilized a photoactive material as a non-toxic alternative to semiconductors for the production of green hydrogen.

Due to the importance of hydrogen fuel in the transition to full decarbonisation and the goal of attaining net zero emissions by 2050, it was demonstrated that easily available oxide and carbon-based materials may be used to produce long-lasting, clean hydrogen from water.

Considering that the majority of hydrogen is derived from fossil fuels, it is essential to find alternatives, such as devices that capture sunlight and split water. Current earth-abundant light-absorbing materials, such as perovskites, are limited in terms of performance or stability, therefore the team sought to enhance the generation of solar fuel in a sustainable manner.

Oxide-based materials are excellent choices for energy applications due to their resistance to air and water. Bismuth oxyiodide (BiOI), which had not been previously attempted for solar fuel applications, was utilized here as an efficient light harvester. BiOI possesses the correct energy levels for water splitting, as well as fabrication simplicity, minimal toxicity, and beneficial stability.

The researchers developed artificial leaf devices that mimic the natural photosynthesis process in plant leaves, but produce fuels like hydrogen instead of carbohydrates. The devices were constructed from BiOI and other eco-friendly substances, and they harvested sunlight to make O2, H2 and CO. The light absorber’s effectiveness and stability were greatly enhanced by sandwiching it between layers of robust oxide and carbon, and then coating the structure with a water-repellent graphite paste to prevent moisture infiltration.

The oxide layers boost the ability to create hydrogen when compared to BiOI alone, whereas artificial leaf devices comprised of several light-harvesting areas, or pixels, performed better than conventional devices with a single bigger pixel of the same total size. The method increased the BiOI light-absorbing pixels’ stability from minutes to many months.

Any defective pixels can be isolated without affecting the rest, allowing them to maintain the performance of the small pixels over a greater region. This enhanced performance permits these devices to not only produce hydrogen, but also convert CO2 into synthesis gas, a crucial intermediary in the commercial production of chemicals and pharmaceuticals.

Share. LinkedIn Twitter Facebook Email

Related Posts

Hydrogen

EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive

02/07/2025
hydrogen

Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects

02/07/2025
Hydrogen

Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes

02/07/2025
Hydrogen

The Hydrogen Heating Mirage: Why Germany’s “H₂-Ready” Promise Risks Locking in High Costs and Low Returns

02/07/2025
Battery

How Lyten’s Salvage Mission Could Upend Europe’s Battery Wars

02/07/2025
Hydrogen

Cost and Policy Roadblocks Stall LEAG’s H2UB Boxberg Green Hydrogen Hub

01/07/2025
Hydrogen

EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive

02/07/2025
BESS

Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks

02/07/2025
hydrogen

Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects

02/07/2025
Hydrogen

Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes

02/07/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.