Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • US Green Hydrogen Extension Faces Economic Reality: Two-Year Window May Not Bridge Competitiveness Gap
  • India’s Energy Storage Market Breakthrough: Record 8.1 GWh Monthly Tender Volume Drives Tariff Competition to ₹3.13/Unit
  • Hyundai’s New Hydrogen Car Deal: Does It Solve the Real Problems?
  • Green Hydrogen Reality Check: Why 80% of EU Projects Face Cancellation This Decade
  • Future of Geothermal Energy Growth, Technology Breakthroughs
  • Australia’s Green Fertiliser Revolution: Inside the GEGHA Hydrogen & Ammonia Project
  • CATL Scales Battery Swapping Infrastructure with Eyes Set on Europe
  • Mineral Interactions Pose Hidden Risks to Geological Hydrogen Storage Integrity
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Pacific
Green Hydrogen H2 News

KAIST’s Electrode Material Reshapes Fuel Cell Landscape

Anela DoksoBy Anela Dokso09/08/20233 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Fuel cells have long been hailed as a potent solution for efficient and clean energy conversion, and now, a breakthrough discovery from the Korea Advanced Institute of Science and Technology (KAIST) is poised to reshape the landscape of fuel cell technology.

Led by Professor Jung Woo-chul from the Department of Materials Science and Engineering and Professor Kang-taek Lee from the Department of Mechanical Engineering, in collaboration with Hongik University’s Professor Kim Joon-hyuk, a research team at KAIST has successfully developed an electrode material that has the potential to significantly enhance the performance of both oxygen ion and proton conductive solid oxide fuel cells (SOFCs and PCFCs, respectively).

Fuel cells are crucial in generating electricity with remarkable efficiency through the utilization of hydrogen as a clean energy source. Their significance is amplified as the world moves towards embracing the potential of hydrogen in various sectors. Ceramic fuel cells, specifically, are gaining prominence due to their capacity to facilitate the conversion of power and hydrogen in devices such as hydrogen electric vehicles, charging stations, and power generation systems. The KAIST team’s innovation addresses a persistent challenge in fuel cell technology – the declining efficiency associated with slower electrode reactions at lower operating temperatures.

The core breakthrough lies in the successful stabilization of an otherwise highly unstable crystal structure. The researchers achieved this by introducing a high valence ion (Ta5+) through doping into a perovskite oxide material. The result was a substantial improvement in catalytic activity, surpassing 100 times the previous levels. This breakthrough has profound implications for fuel cell efficiency and stability, offering a potential solution to the performance degradation observed in existing materials.

The newly developed electrode material’s versatility is a game-changer. It can be applied across four different devices that encompass power generation and hydrogen production in both oxygen ion conductive SOFCs and protonic ceramic fuel cells. Notably, the efficiency achieved with this material surpasses previously reported results, underlining its superiority. Moreover, the material showcased exceptional stability, operating seamlessly for an extended period of 700 hours. This remarkable endurance sets it apart from materials that experience deterioration within just 100 hours of operation.

The implications of this pioneering research are not confined to the lab. The results were published in the esteemed ‘Energy & Environmental Science’ journal, known for its contributions to the fields of materials and chemistry. This recognition from a respected academic institution adds further weight to the significance of KAIST’s breakthrough.

The implications of KAIST’s achievement resonate strongly in a world seeking sustainable energy solutions. By addressing the limitations that have hindered fuel cell efficiency, this research paves the way for more widespread adoption of fuel cell technology. As the globe aims to transition towards greener energy alternatives, this breakthrough could play a pivotal role in realizing a carbon-neutral society.

Share. LinkedIn Twitter Facebook Email

Related Posts

Hydrogen

Australia’s Green Fertiliser Revolution: Inside the GEGHA Hydrogen & Ammonia Project

01/08/2025
Battery

Tesla’s $4.3B South Korean Battery Deal Exposes Critical Supply Chain Vulnerabilities as Tariff Pressures Mount

30/07/2025
Hydrogen

BP’s Exit from Australia’s $55 Billion AREH Highlights Market Uncertainty in Large-Scale Green Hydrogen

29/07/2025
hydrogen

HBIS Launches Hydrogen-Reduced Steel Exports Amid EU CBAM Pressure

28/07/2025
hydrogen

Taranaki Pitches Hydrogen Future Despite Carbon Questions and Regulatory Hurdles

28/07/2025
Hydrogen

Towngas Bets on Hydrogen-Powered EV Charging Amid Global Pullback

28/07/2025
Green Hydrogen

US Green Hydrogen Extension Faces Economic Reality: Two-Year Window May Not Bridge Competitiveness Gap

04/08/2025
energy storage

India’s Energy Storage Market Breakthrough: Record 8.1 GWh Monthly Tender Volume Drives Tariff Competition to ₹3.13/Unit

04/08/2025
Hyundai

Hyundai’s New Hydrogen Car Deal: Does It Solve the Real Problems?

04/08/2025
green hydrogen

Green Hydrogen Reality Check: Why 80% of EU Projects Face Cancellation This Decade

04/08/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.