Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • South Korea’s Largest Hydrogen-Only Fuel Cell Plant Begins Operation in Ulsan
  • Ingeteam Commissions Castilla y León’s First Green Hydrogen Plant
  • Norway’s Karmsund Hydrogen Project to Begin Operations in 2028
  • ITM Power Bets on ‘Hydrogen-as-a-Service’ with New German Subsidiary Hydropulse
  • Greece Weighs Hydrogen Ambitions Against Power Costs and Lack of Subsidies
  • Teesside to Anchor £96M Pipeline Push as Ofgem Backs East Coast Hydrogen Network
  • RIC Energy Secures Site for 220MW Hydrogen-Based E-Fuels Project in Castilla y León
  • ITM Power Gets FEED Contract for Uniper’s Humber H2ub
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Pacific
green hydrogen

KIST’s Terahertz Sensor Pioneers Hydrogen Gas Safety

Anela DoksoBy Anela Dokso25/01/20242 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Korea Institute of Science and Technology (KIST) has unveiled a cutting-edge non-contact terahertz light sensor, setting a new standard in hydrogen gas leak detection.

Dr. Minah Seo and Prof. Yong-Sang Ryu led the research team that achieved an unprecedented detection capability, reaching as low as 0.25% in real-world conditions.

As the world turns to hydrogen as a key player in the future energy landscape, ensuring safety across all stages of its utilization becomes paramount. Hydrogen’s unique properties, being the smallest and lightest molecule, present challenges, particularly in detecting leaks, which can lead to hazardous situations. Traditional electric signal-based sensors have inherent risks of electrical sparks, exacerbating the potential for explosions.

The KIST research team’s non-contact terahertz light sensor marks a significant leap in gas detection technology. Spectroscopy, a non-contact observation method, forms the core of this innovation. Terahertz electromagnetic waves, sensitive to natural vibrations of gas molecules, offer a unique avenue for detecting minute variations, including trace amounts of hydrogen gas.

Central to the breakthrough is the use of metamaterials, offering the ability to amplify signals in specific bands of electromagnetic waves. By developing a terahertz metamaterial that amplifies signals in the gas-sensitive terahertz band, and employing ultra-thin palladium, the team maximized sensitivity to terahertz signals. Palladium, known for its hydrogen permeability, played a dual role in catalytic reactions and hydrogen storage.

To mimic real-world conditions, the team injected hydrogen and oxygen gases into the sensing chamber, achieving exceptional sensitivity and optical signal variation. The technology exhibited remarkable performance, detecting hydrogen gas leakage below 1%, setting a new benchmark for real-time detection capabilities.

Addressing a common challenge with metal hydrides, which are typically irreversible and challenging to reuse, the research team implemented special processing technology to ensure the reusability of the detection platform. Moreover, they achieved the contactless tracking of hydrogen desorption mechanisms at the nanometer scale in real time through optical signals.

Dr. Minah Seo envisions broader applications beyond hydrogen detection, stating, “It is expected to be used to develop a system that can immediately respond to various harmful factors, gases, and diseases through mobile, on-site, and real-time inspections.” The breakthrough technology not only enhances safety in hydrogen applications but also opens avenues for visualizing various gas processes and molecular-level chemical reactions on metal surfaces.

Share. LinkedIn Twitter Facebook Email

Related Posts

Hydrogen

South Korea’s Largest Hydrogen-Only Fuel Cell Plant Begins Operation in Ulsan

25/06/2025
ABS Grants Design Approval to HD Hyundai’s Offshore Floating Nuclear Power Concept

ABS Grants Design Approval to HD Hyundai’s Offshore Floating Nuclear Power Concept

23/06/2025
Tesla

Tesla Expands into China’s Grid Market with $556M Megapack Energy Storage Project

23/06/2025
hydrogen

Australia’s CSIRO Beam-Down Reactor Achieves Breakthrough in Solar-to-Hydrogen Efficiency

19/06/2025
hydrogen

EU Sounds Alarm Over Rare Earth Restrictions as China Tightens Export Controls

18/06/2025
Batteries

Adani-CATL Talks Signal Possible Battery Manufacturing Pivot

18/06/2025
Hydrogen

South Korea’s Largest Hydrogen-Only Fuel Cell Plant Begins Operation in Ulsan

25/06/2025
Hydrogen

Ingeteam Commissions Castilla y León’s First Green Hydrogen Plant

25/06/2025
hydrogen

Norway’s Karmsund Hydrogen Project to Begin Operations in 2028

25/06/2025
hydrogen

ITM Power Bets on ‘Hydrogen-as-a-Service’ with New German Subsidiary Hydropulse

25/06/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.