Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive
  • Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks
  • Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects
  • Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes
  • The Hydrogen Heating Mirage: Why Germany’s “H₂-Ready” Promise Risks Locking in High Costs and Low Returns
  • How Lyten’s Salvage Mission Could Upend Europe’s Battery Wars
  • Doug Wicks on Why Energy Innovation Is Broken—and How to Fix It
  • Cost and Policy Roadblocks Stall LEAG’s H2UB Boxberg Green Hydrogen Hub
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - PREMIUM
Method for Reducing Hydrogen Embrittlement in Supercritical Water Oxidation Systems

Method for Reducing Hydrogen Embrittlement in Supercritical Water Oxidation Systems

Anela DoksoBy Anela Dokso16/01/20252 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Hydrogen embrittlement is a significant problem faced in various industrial processes, particularly those involving metals.

This phenomenon occurs when hydrogen infiltrates metal during manufacturing or from external environmental sources, causing the metal to become brittle and fracture over time. The occurrence of hydrogen embrittlement can lead to unexpected failures of metal components, posing safety and operational issues.

Supercritical water oxidation is a process used to effectively decompose organic compounds, including persistent environmental pollutants like PFAS (per- and polyfluoroalkyl substances). This method involves heating water above its critical temperature and pressure to achieve a state where it acts as a powerful solvent capable of breaking down harmful chemicals. However, the use of supercritical water in these processes poses challenges, particularly concerning the integrity of the materials used in constructing the system’s components.

The Invention: Addressing Material Failures

During the testing of PFAS destruction using supercritical water oxidation, inventors at Revive Environmental Technology, LLC observed failures in the tubing used within the system. Subsequent metallurgical analysis indicated that hydrogen embrittlement was the culprit behind these failures. Recognizing the urgent need to address this issue, the inventors designed a method to modify the conditions under which these processes are carried out to minimize or prevent hydrogen embrittlement.

The core focus of the invention is on altering operational conditions to avoid the accumulation of hydrogen within the metals used in supercritical water systems. By tweaking certain parameters, the invention aims to improve the longevity and reliability of tubes and other components by reducing the metal’s susceptibility to hydrogen infiltration. This could involve adjusting the temperature, pressure, or even the chemical environment in which the materials operate.


Stay updated on the latest in energy! Follow us on LinkedIn, Facebook, and X for real-time news and insights. Don’t miss out on exclusive interviews and webinars—subscribe to our YouTube channel today! Join our community and be part of the conversation shaping the future of energy.

hydrogen patent
Share. LinkedIn Twitter Facebook Email

Related Posts

Hydrogen

EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive

02/07/2025
hydrogen

Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects

02/07/2025
Hydrogen

Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes

02/07/2025
Hydrogen

The Hydrogen Heating Mirage: Why Germany’s “H₂-Ready” Promise Risks Locking in High Costs and Low Returns

02/07/2025
Douglas Wicks

Doug Wicks on Why Energy Innovation Is Broken—and How to Fix It

01/07/2025
Hydrogen

Cost and Policy Roadblocks Stall LEAG’s H2UB Boxberg Green Hydrogen Hub

01/07/2025
Hydrogen

EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive

02/07/2025
BESS

Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks

02/07/2025
hydrogen

Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects

02/07/2025
Hydrogen

Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes

02/07/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.