Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • TWO DAY MASTERCLASS ON: EXPLOITATION & COMMERCIALIZATION POTENTIAL OF NATURAL HYDROGEN
  • Hydrogen Insurance Market Surge Reflects Industrial Safety Challenges as Project Pipeline Expands
  • Spain’s Hydrogen Infrastructure Faces Environmental Roadblock
  • Nuclear Site Transformation: EnBW’s 400MW Battery Plan Tests Germany’s Storage Economics
  • 2025 Global Electricity Market: Growth, Emissions Challenges, and Renewable Energy Dynamics
  • Tesla’s $4.3B South Korean Battery Deal Exposes Critical Supply Chain Vulnerabilities as Tariff Pressures Mount
  • Austria’s €3.5B Hydrogen Gambit: Infrastructure Investment Against European Market Skepticism
  • Brazil’s Hydrogen Pipeline Swells to 111 Projects—But Deep Challenges Stall Progress
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Analysis
Green Hydrogen H2 News

Modelling floating offshore wind turbine systems under extreme storm conditions

Arnes BiogradlijaBy Arnes Biogradlija22/05/20202 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

The offshore wind industry has experienced significant growth in recent years, and continues to expand both in the UK and worldwide. 

Nearly all offshore wind turbines installed to date are located in relatively shallow water, mounted on fixed bottom support structures. However, the number of suitable shallow water sites with high wind resources are limited, and hence it is necessary to expand wind turbine technology for deployment at deeper water sites. 

Floating offshore wind turbine (FOWT) systems offer an opportunity to achieve this expansion, and can potentially play a vital role in providing affordable and sustainable energy for the UK as part of a broad and balanced energy system.

In order for cost-competitive and reliable FOWTs to be developed, it is crucial that the complex hydrodynamic and aerodynamic interactions with the system are well understood. 

The survivability in storm conditions is of particular importance, since the FOWTs will be subject to concurrent attacks from strong wind, steep waves, rising water levels due to storm surge as well as the effects from the complex interplay between the underlying flow processes, e.g. wind induced currents and wave breaking.

Therefore, the aim of the project is to characterize and quantify extreme loading on FOWTs in a complex and harsh marine environment with strong wind, rising water level, significant wind-driven current, steep swell and wind waves, and the interactions between each of these parameters.

This will be achieved through numerical and physical modelling following specific objectives:

  • Increase understanding of the flow dynamics and interaction with FOWTs under complex environmental conditions, through a series of carefully configured wave tank tests.
  • Further development and validation of an integrated CFD model for the fully coupled analysis of the hydrodynamics and aerodynamics of FOWT structures under the action of both wind, waves, and mooring.
  • Optimization of the parallel efficiency of the hybrid CFD model through a new dynamic load balancing technique.
  • Characterization of the coupled effects of wind, current, and rising water level on large-scale wave evolution and extreme wave events including the onset of wave breaking in storm conditions.
  • Quantification of the extreme loading on FOWTs including effects of breaking waves and aeration under realistic environmental conditions through numerical and physical experiments.
Share. LinkedIn Twitter Facebook Email

Related Posts

hydrogen

Hydrogen Insurance Market Surge Reflects Industrial Safety Challenges as Project Pipeline Expands

31/07/2025
Hydrogen

Spain’s Hydrogen Infrastructure Faces Environmental Roadblock

31/07/2025
storage energy Battery

Nuclear Site Transformation: EnBW’s 400MW Battery Plan Tests Germany’s Storage Economics

31/07/2025
Electricity

2025 Global Electricity Market: Growth, Emissions Challenges, and Renewable Energy Dynamics

31/07/2025
hydrogen

Austria’s €3.5B Hydrogen Gambit: Infrastructure Investment Against European Market Skepticism

30/07/2025
hydrogen

Germany’s Hydrogen Acceleration Act: Regulatory Relief Amid Market Reality Gap

30/07/2025
NATURAL HYDROGEN

TWO DAY MASTERCLASS ON: EXPLOITATION & COMMERCIALIZATION POTENTIAL OF NATURAL HYDROGEN

31/07/2025
hydrogen

Hydrogen Insurance Market Surge Reflects Industrial Safety Challenges as Project Pipeline Expands

31/07/2025
Hydrogen

Spain’s Hydrogen Infrastructure Faces Environmental Roadblock

31/07/2025
storage energy Battery

Nuclear Site Transformation: EnBW’s 400MW Battery Plan Tests Germany’s Storage Economics

31/07/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.