Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Delayed Classification of Nuclear Hydrogen Could Undermine EU Decarbonisation Strategy
  • Honda Hits the Brakes on Canadian EV Ambitions Amid Trade Turbulence and Demand Slump
  • Germany’s EV Uptick Defies Incentive Cut—While Hydrogen Vehicles Retreat to Commercial Niche
  • Fortescue’s Strategic Retrenchment Reflects Green Hydrogen’s Global Growing Pains
  • Canada’s Steel Industry Pioneers Decarbonization for Economic and Environmental Success
  • California’s Clean Energy Push Gets $535M Boost as Aypa Power Secures Financing for Vidal Hybrid Project
  • Brazil Eyes Energy Transition with Russian-Backed SMRs
  • Envision Energy to Build Net Zero Industrial Park in Brazil Focused on Green Ammonia and SAF
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Europe
Green Hydrogen H2 News

Moscow scientists boost hydrogen generators efficiency

Anela DoksoBy Anela Dokso14/02/20222 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram
Employees at Moscow State University’s Faculty of Chemistry have improved the reaction of magnesium hydride with water, paving the way for the generation of hydrogen for use in fuel cells.

The addition of alkali metal, ammonium, and/or magnesium salts increases hydrogen yield from 22% to nearly 100%, while the hydrogen flow rate increases eightfold, according to the study’s authors.

Compact low-power fuel cells, such as chargers for electronics or power supply systems for consumers in remote and isolated locations, are powered by autonomous hydrogen sources. The interaction of a light metal (aluminum or magnesium) or its hydride with water is the most accessible way to obtain hydrogen for such sources. Hydrides are more efficient than metals on their own because they contain “their own” hydrogen, which is released in addition to hydrogen from water during the oxidation reaction. However, because aluminum, magnesium, and their hydrides interact with water so slowly under normal conditions, scientists are looking for ways to increase their reactivity.

Lyudmila Sevastyanova, Semyon Klyamkin, and Vladimir Stupnikov of the Laboratory of High Pressure Chemistry of the Department of Chemical Technology and New Materials of the Faculty of Chemistry of Moscow State University, led by the laboratory’s head Boris Bulychev, presented a new work. Its goal is to choose methods for preparing materials and simple aqueous solutions in such a way that their interaction produces the most hydrogen and moves at a fast enough speed.

To oxidize magnesium hydride, the researchers proposed using neutral salt solutions such as ammonium or magnesium chlorides and bromides. It is possible to achieve nearly 100% hydrogen yield in this reaction with their help without changing the acidity of the solution. Furthermore, the procedure is much quicker.

The mechanism of action of salts is still being researched. Insoluble hydroxides are most likely formed on the surface of the hydride during the reaction with water, preventing further water penetration and effectively stopping the reaction. Due to complexation, the presence of salts promotes the dissolution of these hydroxides or simply makes them more “loose.”

The authors intend to continue developing activation methods in future studies in order to expand the use of magnesium, aluminum, and their hydrides as relatively inexpensive and easy-to-find hydrogen generators.

Share. LinkedIn Twitter Facebook Email

Related Posts

Green Hydrogen

Delayed Classification of Nuclear Hydrogen Could Undermine EU Decarbonisation Strategy

14/05/2025
EV

Honda Hits the Brakes on Canadian EV Ambitions Amid Trade Turbulence and Demand Slump

14/05/2025
Hydrogen

Germany’s EV Uptick Defies Incentive Cut—While Hydrogen Vehicles Retreat to Commercial Niche

14/05/2025
Hydrogen

Fortescue’s Strategic Retrenchment Reflects Green Hydrogen’s Global Growing Pains

14/05/2025
Hydrogen

Canada’s Steel Industry Pioneers Decarbonization for Economic and Environmental Success

14/05/2025
Energy

California’s Clean Energy Push Gets $535M Boost as Aypa Power Secures Financing for Vidal Hybrid Project

14/05/2025
Green Hydrogen

Delayed Classification of Nuclear Hydrogen Could Undermine EU Decarbonisation Strategy

14/05/2025
EV

Honda Hits the Brakes on Canadian EV Ambitions Amid Trade Turbulence and Demand Slump

14/05/2025
Hydrogen

Germany’s EV Uptick Defies Incentive Cut—While Hydrogen Vehicles Retreat to Commercial Niche

14/05/2025
Hydrogen

Fortescue’s Strategic Retrenchment Reflects Green Hydrogen’s Global Growing Pains

14/05/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.