Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Delayed Classification of Nuclear Hydrogen Could Undermine EU Decarbonisation Strategy
  • Honda Hits the Brakes on Canadian EV Ambitions Amid Trade Turbulence and Demand Slump
  • Germany’s EV Uptick Defies Incentive Cut—While Hydrogen Vehicles Retreat to Commercial Niche
  • Fortescue’s Strategic Retrenchment Reflects Green Hydrogen’s Global Growing Pains
  • Canada’s Steel Industry Pioneers Decarbonization for Economic and Environmental Success
  • California’s Clean Energy Push Gets $535M Boost as Aypa Power Secures Financing for Vidal Hybrid Project
  • Brazil Eyes Energy Transition with Russian-Backed SMRs
  • Envision Energy to Build Net Zero Industrial Park in Brazil Focused on Green Ammonia and SAF
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Green Hydrogen H2 News

New catalyst to convert unpleasant hydrogen sulfide into cash

Anela DoksoBy Anela Dokso01/11/20222 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Engineers and scientists at Rice University have developed a method for petrochemical refineries to turn an unpleasant byproduct into money.

The smell of rotten eggs is unmistakably present in hydrogen sulfide gas. Thousands of tons of the toxic gas are produced annually as a byproduct of processes that remove sulfur from petroleum, natural gas, coal, and other products. It frequently comes from sewers, stockyards, and landfills, but it is especially problematic for refineries, petrochemical plants, and other industries.

Naomi Halas, a Rice engineer, physicist, and chemist, and colleagues present a process that transforms hydrogen sulfide into sulfur and high-demand hydrogen gas in a single step using gold nanoparticles. Even better, the one-step process only needs light as its source of energy. Peter Nordlander of Rice University, Emily Carter of Princeton University, and Hossein Robatjazi of Syzygy Plasmonics are co-authors of the study.

Each hydrogen sulfide gas molecule (H2S) consists of two hydrogen atoms and one sulfur atom. The main component of the hydrogen economy, clean-burning hydrogen gas (H2), has two hydrogen atoms in each of its molecules. In the latest research, Halas’ team placed tiny islands of gold on the surface of silicon dioxide powder grains. Each island was a gold nanoparticle that was 10 billionths of a meter across and had a strong interaction with a particular visible light wavelength. “Hot carriers,” or brief, high-energy electrons, are produced by these plasmonic processes and can power catalysis.

In the work, Halas and co-authors demonstrated how a bank of LED lights could effectively induce hot carrier photocatalysis and convert H2S straight into H2 gas and sulfur using a laboratory setting. Comparing it to the well-established catalytic process refineries employ to break down hydrogen sulfide is striking. It is referred to as the Claus process and instead of producing hydrogen, it transforms sulfur into water. There are several steps in the Claus procedure as well, some of which call for combustion chambers to be heated to a temperature of roughly 1,500 degrees Fahrenheit.

Halas and Nordlander are co-founders of Syzygy Plasmonics, a startup firm with more than 60 people based in Houston that has licensed the plasmonic hydrogen sulfide remediation technology.

Share. LinkedIn Twitter Facebook Email

Related Posts

Green Hydrogen

Delayed Classification of Nuclear Hydrogen Could Undermine EU Decarbonisation Strategy

14/05/2025
EV

Honda Hits the Brakes on Canadian EV Ambitions Amid Trade Turbulence and Demand Slump

14/05/2025
Hydrogen

Germany’s EV Uptick Defies Incentive Cut—While Hydrogen Vehicles Retreat to Commercial Niche

14/05/2025
Hydrogen

Fortescue’s Strategic Retrenchment Reflects Green Hydrogen’s Global Growing Pains

14/05/2025
Hydrogen

Canada’s Steel Industry Pioneers Decarbonization for Economic and Environmental Success

14/05/2025
Energy

California’s Clean Energy Push Gets $535M Boost as Aypa Power Secures Financing for Vidal Hybrid Project

14/05/2025
Green Hydrogen

Delayed Classification of Nuclear Hydrogen Could Undermine EU Decarbonisation Strategy

14/05/2025
EV

Honda Hits the Brakes on Canadian EV Ambitions Amid Trade Turbulence and Demand Slump

14/05/2025
Hydrogen

Germany’s EV Uptick Defies Incentive Cut—While Hydrogen Vehicles Retreat to Commercial Niche

14/05/2025
Hydrogen

Fortescue’s Strategic Retrenchment Reflects Green Hydrogen’s Global Growing Pains

14/05/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.