Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project
  • Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One
  • TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon
  • NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions
  • Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System
  • Why Physics Dooms the “Green Hydrogen” Fuel Dream
  • NEOM Green Hydrogen Project 80% Completed
  • Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - PREMIUM
hydrogen

Process for Producing Hydrogen Product

Anela DoksoBy Anela Dokso13/12/20242 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

A recently filed patent by Linde GmbH introduces a process that enhances the production of hydrogen while ensuring the minimization and potential utilization of by-products such as carbon dioxide.

The patent delineates a meticulous process that begins with a carbon-containing input. Through reforming and water-gas shift reactions, this input is transformed into a synthesis gas primarily composed of hydrogen and carbon dioxide. The core innovation lies in the separation method used to extract the hydrogen fraction and purify the carbon dioxide fraction to a level suitable for commercial use or safe sequestration.

A significant highlight of this process is the use of a first pressure swing adsorber (PSA1). This device plays a crucial role in fractionating the synthesis gas into two separate streams: a carbon dioxide-depleted high-pressure fraction and a carbon dioxide-enriched low-pressure fraction. This method is instrumental in enhancing the efficiency of gas separation, leading to better yield and purity of the desired hydrogen product.

Following the initial separation via PSA, the process integrates cryogenic gas fractionation. This step is crucial for compressing the carbon dioxide-enriched fraction, allowing for the procurement of a highly purified carbon dioxide component. The ability to attain such high purity makes this CO2 fraction valuable for numerous industrial applications or for sequestration, essentially providing a means to capture and mitigate carbon emissions.

The method patented by Linde GmbH stands to contribute significantly to the hydrogen economy by optimizing the production process and managing by-products effectively. It addresses a critical challenge in hydrogen production: how to produce hydrogen efficiently while minimizing environmental impact through effective carbon dioxide management.

This process is particularly relevant in the context of global efforts to transition to more sustainable energy sources. With its dual focus on producing clean hydrogen and managing carbon dioxide, Linde’s innovation could support industries in meeting environmental regulations and achieving sustainability goals.

hydrogen
Share. LinkedIn Twitter Facebook Email

Related Posts

Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
Hydrogen

Why Physics Dooms the “Green Hydrogen” Fuel Dream

03/06/2025
Green Hydrogen

NEOM Green Hydrogen Project 80% Completed

03/06/2025
Green Hydrogen - Pillar of European Industrial Policy but Not Without Challenges

Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges

03/06/2025
Plug Power's Georgia Plant Sets Record in U.S. Hydrogen Production Milestone

Plug Power’s Georgia Plant Sets Record in U.S. Hydrogen Production Milestone

03/06/2025
Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

04/06/2025
NuScale's NRC Approval Sets Stage for America's Next Generation SMR Power Solutions

NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions

04/06/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.