Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Has China Just Outpaced the West in the Race to Net Zero?
  • HyTerra Expands Kansas Hydrogen-Helium Potential with McCoy 1 Well Results
  • Meranti Eyes Mid-2026 FID for Oman Green HBI Plant to Anchor Low-Carbon Steel Supply Chain
  • Sungrow Hydrogen Opens Munich Technology Lab to Advance European Electrolysis Research
  • EPA Chief Joins New York Debate Over Battery Storage Safety Amid State’s 6 GW Target
  • Bill Gates’ Breakthrough Superyacht Sale Highlights Limits of Hydrogen Adoption at Sea
  • Hyundai’s Second-Generation Nexo Surpasses 1,000 Monthly Sales, Testing Hydrogen’s Market Viability Against EVs
  • Philippines Turns to Natural Hydrogen Exploration Amid Energy Security Risks
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Hydrogen
Hydrogen

Progress in Development of Supported Palladium Catalysts for Dehydrogenation of Heterocyclic Liquid Organic Hydrogen Carriers (LOHC)

Arnes BiogradlijaBy Arnes Biogradlija20/09/20242 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

This comprehensive review explores the recent advancements in the development of palladium (Pd) catalysts for the reversible dehydrogenation of heterocyclic liquid organic hydrogen carriers (LOHC).

Given the shift towards low-carbon clean energy, hydrogen energy has emerged as a promising candidate. The review provides insights into the design and efficiency of Pd catalysts, crucial for hydrogen storage and transportation. It consolidates developments from the past five years, highlighting the impact of Pd state, content, and support nature on catalyst efficiency.

Hydrogen is being recognized as the next-generation fuel that could potentially replace traditional fossil fuels. Generated from renewable sources such as biomass, solar, wind, and water, hydrogen offers numerous applications across manufacturing, transportation, and power generation. However, hydrogen storage and transportation present significant challenges. Liquid Organic Hydrogen Carriers (LOHCs) have garnered attention due to their ability to store and release hydrogen safely and efficiently.

The dehydrogenation and hydrogenation processes in LOHC systems are slow and require catalysts to accelerate the reactions. Palladium (Pd) catalysts have emerged as a significant focus due to their high efficiency and potential cost-effectiveness. The review discusses the varying efficiency of catalysts depending on the Pd state and content. It emphasizes that Pd clusters and nanoparticles (1–4 nm) on reducible supports show high promise.

The support material for Palladium catalysts plays a critical role in their performance. Supports with high reducibility enhance the catalyst’s activity and durability. The study highlights the necessity of selecting the right support material to maximize the catalyst’s efficiency in hydrogen storage and release.

Researchers have found that catalysts with low Pd content can still perform effectively with different LOHCs. This finding is essential for developing cost-effective solutions for hydrogen storage and transportation.

Share. LinkedIn Twitter Facebook Email

Related Posts

China

Has China Just Outpaced the West in the Race to Net Zero?

20/08/2025
hydrogen

Meranti Eyes Mid-2026 FID for Oman Green HBI Plant to Anchor Low-Carbon Steel Supply Chain

20/08/2025
Hydrogen

Sungrow Hydrogen Opens Munich Technology Lab to Advance European Electrolysis Research

20/08/2025
Bill Gates' Breakthrough Superyacht Sale Highlights Limits of Hydrogen Adoption at Sea

Bill Gates’ Breakthrough Superyacht Sale Highlights Limits of Hydrogen Adoption at Sea

19/08/2025
Hyundai Hydrogen

Hyundai’s Second-Generation Nexo Surpasses 1,000 Monthly Sales, Testing Hydrogen’s Market Viability Against EVs

19/08/2025
hydrogen

Hydrogen Storage’s Hidden Environmental Costs: Scale and Production Methods Drive Lifecycle Impacts

18/08/2025
China

Has China Just Outpaced the West in the Race to Net Zero?

20/08/2025
HyTerra Expands Kansas Hydrogen-Helium Potential with McCoy 1 Well Results

HyTerra Expands Kansas Hydrogen-Helium Potential with McCoy 1 Well Results

20/08/2025
hydrogen

Meranti Eyes Mid-2026 FID for Oman Green HBI Plant to Anchor Low-Carbon Steel Supply Chain

20/08/2025
Hydrogen

Sungrow Hydrogen Opens Munich Technology Lab to Advance European Electrolysis Research

20/08/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.