Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Oman’s Hydrom Cuts Fees, Extends Tax Breaks to Accelerate Green Hydrogen Investments
  • Denmark’s Lokaltog Expands Battery Train Fleet to Boost Regional Rail Decarbonization
  • Thyssenkrupp Nucera Rethinks U.S. Hydrogen Strategy Amid Policy Shift
  • Indonesia Targets Maritime Decarbonization with Green Hydrogen Ferry Feasibility Study
  • L&T Eyes Global Partnerships in India’s Green Hydrogen Push
  • UK Nuclear Deployment Stalled by Regulatory Complexity, Taskforce Warns
  • POSCO Future M Expands LFP Cathode Capacity Through Strategic Partnership
  • Elogen Delivers 2.5 MW PEM Electrolyzer for Dutch Offshore Wind-Hydrogen Integration
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Natural Hydrogen

Revolutionary Research Breaks Barriers in Hydrogen Fuel Cell Technology

Anela DoksoBy Anela Dokso25/10/20232 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Hydrogen fuel cells, long considered a beacon of sustainable energy, have taken a significant step forward, thanks to pioneering research by the Ulsan National Institute of Science and Technology (UNIST).

A team led by Professor Myoung Soo Lah in the Department of Chemistry at UNIST has achieved a groundbreaking advancement in the efficiency of hydrogen fuel cells. Their innovative approach, published in the Angewandte Chemie International Edition, promises to transform the landscape of eco-friendly next-generation energy sources.

Hydrogen fuel cells are renowned for their remarkable efficiency and environmentally friendly power generation capabilities. They directly convert chemical energy produced from the reactions between hydrogen and oxygen into electrical energy. However, to harness their full potential, enhancing hydrogen ion conductivity within the fuel cell’s solid electrolyte is critical.

Conventionally, Proton-Exchange Membrane Fuel Cells use Nafion as an electrolyte material due to its stability and high hydrogen ion conductivity. However, Nafion’s limitations in terms of temperature range and performance enhancement mechanisms have posed challenges.

UNIST’s research team turned to metal-organic frameworks (MOFs) as an alternative solution. MOFs are materials that combine metal clusters with organic ligands, forming a porous structure. Renowned for their chemical and thermal stability, MOFs have gained recognition in fuel cell applications. The key to their potential lies in the pores of varying sizes that can be utilized to introduce guest molecules for high hydrogen ion conductivity.

In this study, the UNIST researchers introduced zwitterionic sulfamic acid, a low-acidity amphoteric ionic substance with positive and negative charges, as guest molecules into two types of MOFs: MOF-808 and MIL-101. Sulfamic acid, with its exceptional hydrogen bonding capabilities, served as a medium for transferring hydrogen ions within the fuel cell. By increasing the amount of sulfamic acid within the MOF pores, they achieved hydrogen ion conductivity levels of 10-1 Scm-1 or higher, while maintaining durability over an extended period.

This achievement holds the promise of significantly advancing the efficiency and performance of hydrogen fuel cells. By utilizing metal-organic frameworks and innovative guest molecules, the UNIST research paves the way for more sustainable and efficient energy solutions. In an era where global efforts toward decarbonization are paramount, this breakthrough could be a game-changer.

Share. LinkedIn Twitter Facebook Email

Related Posts

hydrogen

Indonesia Targets Maritime Decarbonization with Green Hydrogen Ferry Feasibility Study

14/08/2025
hydrogen

POSCO Future M Expands LFP Cathode Capacity Through Strategic Partnership

13/08/2025
Fortescue Secures $2bn Loan, But Green Hydrogen Projects Remain on Hold

Fortescue Secures $2bn Loan, But Green Hydrogen Projects Remain on Hold

12/08/2025
Sarawak's Hydrogen Bus Push Faces Reliability and Cost Concerns

Sarawak’s Hydrogen Bus Push Faces Reliability and Cost Concerns

12/08/2025
hydrogen

Bintulu Port Signs Trio of MoUs to Advance Hydrogen, Bio-LNG and SAF Development

12/08/2025
ev

CATL’s Ning Service Targets NEV Repair Bottleneck with CTP Battery Maintenance Solution

12/08/2025
hydrogen

Oman’s Hydrom Cuts Fees, Extends Tax Breaks to Accelerate Green Hydrogen Investments

14/08/2025
Denmark's Lokaltog Expands Battery Train Fleet to Boost Regional Rail Decarbonization

Denmark’s Lokaltog Expands Battery Train Fleet to Boost Regional Rail Decarbonization

14/08/2025
Thyssenkrupp

Thyssenkrupp Nucera Rethinks U.S. Hydrogen Strategy Amid Policy Shift

14/08/2025
hydrogen

Indonesia Targets Maritime Decarbonization with Green Hydrogen Ferry Feasibility Study

14/08/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.