Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project
  • Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One
  • TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon
  • NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions
  • Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System
  • Why Physics Dooms the “Green Hydrogen” Fuel Dream
  • NEOM Green Hydrogen Project 80% Completed
  • Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Natural Hydrogen

Revolutionary Research Breaks Barriers in Hydrogen Fuel Cell Technology

Anela DoksoBy Anela Dokso25/10/20232 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Hydrogen fuel cells, long considered a beacon of sustainable energy, have taken a significant step forward, thanks to pioneering research by the Ulsan National Institute of Science and Technology (UNIST).

A team led by Professor Myoung Soo Lah in the Department of Chemistry at UNIST has achieved a groundbreaking advancement in the efficiency of hydrogen fuel cells. Their innovative approach, published in the Angewandte Chemie International Edition, promises to transform the landscape of eco-friendly next-generation energy sources.

Hydrogen fuel cells are renowned for their remarkable efficiency and environmentally friendly power generation capabilities. They directly convert chemical energy produced from the reactions between hydrogen and oxygen into electrical energy. However, to harness their full potential, enhancing hydrogen ion conductivity within the fuel cell’s solid electrolyte is critical.

Conventionally, Proton-Exchange Membrane Fuel Cells use Nafion as an electrolyte material due to its stability and high hydrogen ion conductivity. However, Nafion’s limitations in terms of temperature range and performance enhancement mechanisms have posed challenges.

UNIST’s research team turned to metal-organic frameworks (MOFs) as an alternative solution. MOFs are materials that combine metal clusters with organic ligands, forming a porous structure. Renowned for their chemical and thermal stability, MOFs have gained recognition in fuel cell applications. The key to their potential lies in the pores of varying sizes that can be utilized to introduce guest molecules for high hydrogen ion conductivity.

In this study, the UNIST researchers introduced zwitterionic sulfamic acid, a low-acidity amphoteric ionic substance with positive and negative charges, as guest molecules into two types of MOFs: MOF-808 and MIL-101. Sulfamic acid, with its exceptional hydrogen bonding capabilities, served as a medium for transferring hydrogen ions within the fuel cell. By increasing the amount of sulfamic acid within the MOF pores, they achieved hydrogen ion conductivity levels of 10-1 Scm-1 or higher, while maintaining durability over an extended period.

This achievement holds the promise of significantly advancing the efficiency and performance of hydrogen fuel cells. By utilizing metal-organic frameworks and innovative guest molecules, the UNIST research paves the way for more sustainable and efficient energy solutions. In an era where global efforts toward decarbonization are paramount, this breakthrough could be a game-changer.

Share. LinkedIn Twitter Facebook Email

Related Posts

hydrogen

Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System

04/06/2025
hydrogen

Tasmania Selects Bell Bay Power Fuels to Lead Green Hydrogen Hub

02/06/2025
ACWA Power Commits $10B to Malaysia's Clean Energy Push

ACWA Power Commits $10B to Malaysia’s Clean Energy Push

30/05/2025
hydrogen

Hebei–Beijing Supply Chain Tests Hydrogen Infrastructure and Scale

28/05/2025
Batteries Lithium

Meridian Activates New Zealand’s First Grid-Scale Battery

26/05/2025
KIMM Pushes Solar Hydrogen Closer to Market with Scalable BiVO₄ Electrode Breakthrough

KIMM Pushes Solar Hydrogen Closer to Market with Scalable BiVO₄ Electrode Breakthrough

22/05/2025
Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

04/06/2025
NuScale's NRC Approval Sets Stage for America's Next Generation SMR Power Solutions

NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions

04/06/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.