Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project
  • Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One
  • TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon
  • NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions
  • Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System
  • Why Physics Dooms the “Green Hydrogen” Fuel Dream
  • NEOM Green Hydrogen Project 80% Completed
  • Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Revolutionizing Green Hydrogen Production: Innovative Electrode Breakthrough

Revolutionizing Green Hydrogen Production: Innovative Electrode Breakthrough

Anela DoksoBy Anela Dokso30/11/20232 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Researchers from the Gwangju Institute of Science and Technology in South Korea have unveiled a novel electrode design featuring a Schottky Junction. This innovation addresses the longstanding challenge of poor performance in electrochemical catalysts used for water splitting, particularly hindered by the low electrical conductance of (oxy)hydroxide species generated during the process.

Green hydrogen, derived from renewable energy, stands as the fuel of the future for a decarbonized world. Electrolysis, a process involving the splitting of water into oxygen and hydrogen through electrochemical cells, represents a promising method for green hydrogen production. Despite its simplicity, high-quality outputs, and zero carbon emissions, the commercial-scale adoption of electrochemical water splitting faces hurdles, primarily due to the suboptimal electrical conductivity of (oxy)hydroxide catalysts formed in situ during the process.

Associate Professor Junhyeok Seo and his team at the Gwangju Institute of Science and Technology have confronted this challenge head-on. Their innovative solution involves the incorporation of Schottky junctions into the electrode design. Schottky junctions, found at the interface of metallic nickel-tungsten nitride (Ni-W5N4) and semiconducting n-type nickel-iron (oxy)hydroxide (NiFeOOH) catalyst, proved to be a game-changer. This electrode showcased the ability to surmount the conductance limitations of (oxy)hydroxide, significantly enhancing water splitting capabilities.

The research findings, made available online on August 30, 2023, and scheduled for publication in the January 2024 issue of the Applied Catalysis B: Environmental journal, shed light on this groundbreaking electrode design. The Schottky junction’s role in mitigating the poor electrical properties of (oxy)hydroxide emerges as a pivotal advancement, potentially propelling electrochemical water splitting into broader industrial applications.

With the improved catalytic activity demonstrated by the Schottky junction-based electrode, the researchers have opened avenues for efficient and sustained water splitting. The electrode showcased remarkable performance, facilitating continuous industrial seawater splitting for an impressive 10-day duration. This breakthrough is a significant stride toward realizing the commercial viability of electrochemical water splitting for widespread green hydrogen production.

Share. LinkedIn Twitter Facebook Email

Related Posts

hydrogen

Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System

04/06/2025
hydrogen

Tasmania Selects Bell Bay Power Fuels to Lead Green Hydrogen Hub

02/06/2025
ACWA Power Commits $10B to Malaysia's Clean Energy Push

ACWA Power Commits $10B to Malaysia’s Clean Energy Push

30/05/2025
hydrogen

Hebei–Beijing Supply Chain Tests Hydrogen Infrastructure and Scale

28/05/2025
Batteries Lithium

Meridian Activates New Zealand’s First Grid-Scale Battery

26/05/2025
KIMM Pushes Solar Hydrogen Closer to Market with Scalable BiVO₄ Electrode Breakthrough

KIMM Pushes Solar Hydrogen Closer to Market with Scalable BiVO₄ Electrode Breakthrough

22/05/2025
Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

04/06/2025
NuScale's NRC Approval Sets Stage for America's Next Generation SMR Power Solutions

NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions

04/06/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.