Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive
  • Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks
  • Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects
  • Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes
  • The Hydrogen Heating Mirage: Why Germany’s “H₂-Ready” Promise Risks Locking in High Costs and Low Returns
  • How Lyten’s Salvage Mission Could Upend Europe’s Battery Wars
  • Doug Wicks on Why Energy Innovation Is Broken—and How to Fix It
  • Cost and Policy Roadblocks Stall LEAG’s H2UB Boxberg Green Hydrogen Hub
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Green Hydrogen H2 News

South Korean researchers study heat flows in liquid hydrogen tanks

Anela DoksoBy Anela Dokso03/01/20233 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Many people believe that hydrogen will be the fuel of the future. However, when it comes to its large-scale, commercial transport and storage, there are still difficulties and safety restrictions to increasing the storage efficiency of liquefied hydrogen fuel.

Now, using multiphase-thermal flow simulations, researchers from South Korea have explored the heat flows and phase shifts within a cryogenic fuel tank experimentally and computationally to disclose important insights for their safe and effective design.

Growing worries about climate change have highlighted the necessity of switching from fossil fuels to alternate energy sources. The most promising of them for the transportation sector is hydrogen fuel. At the moment, hydrogen fuel is carried in specialized tanks as high-pressure gas. But this method is dangerous and ineffective, at the same time. Researchers are increasingly considering the usage of liquified hydrogen fuel to address this issue.

Only cryogenic tanks (cryotanks), which maintain temperatures below -2530C—boiling hydrogen’s point—can transport liquefied hydrogen fuel. The liquefied fuel in a cryotank endures some evaporation despite thermal insulation. “Boil-Off Gas (BOG)” is a unit used to measure the flow rate of vaporization. An excessive BOG might cause the tank to have too much internal pressure, which can cause cracks and fissures. This makes comprehending and managing BOG a crucial aspect of cryotank design.

In order to achieve this, a research team under the direction of Professor Jong-Chun Park of Pusan National University in South Korea has looked into the relationship between BOG and another crucial design parameter known as the tank filling ratio (FR), which is the ratio of the mass of liquefied fuel in the tank to the tank’s capacity at 150C.

The results of the researchers’ trials revealed that BOG rises quadratically with FR. They also discovered that the temperature of the vapor phase declined non-linearly with FR, whilst the temperature of the liquid phase remained constant. Then, using computational fluid dynamics, the researchers simulated the tank’s multiphase-thermal flow. They were able to see the vaporization, thermal fluxes, and heat transfers inside the vacuum-insulated tank with ease as a result. Using data from experiments carried out in conjunction with Daewoo Shipbuilding & Marine Engineering Co., Ltd., the researchers validated their calculations (DSME).

The development of commercial cryotanks for liquid hydrogen could be sped up by using the multiphase-thermal modeling method employed here. This research is important for the implementation of a hydrogen-centered civilization since it has numerous uses, ranging from offshore powerplants to autos and airplanes.

Share. LinkedIn Twitter Facebook Email

Related Posts

BESS

Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks

02/07/2025
hydrogen

Cost Pressures Topple Queensland’s $12.5 Billion CQ‑H2 Green Hydrogen Project

01/07/2025
Sodium-Ion

Sodium-Ion Batteries Gain Ground as Lithium Costs and Supply Risks Reshape Storage Markets

30/06/2025
Hydrogen

Japan Reimagines Internal Combustion with Hydrogen and Bioethanol

27/06/2025
Hydrogen

South Korea’s Largest Hydrogen-Only Fuel Cell Plant Begins Operation in Ulsan

25/06/2025
ABS Grants Design Approval to HD Hyundai’s Offshore Floating Nuclear Power Concept

ABS Grants Design Approval to HD Hyundai’s Offshore Floating Nuclear Power Concept

23/06/2025
Hydrogen

EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive

02/07/2025
BESS

Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks

02/07/2025
hydrogen

Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects

02/07/2025
Hydrogen

Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes

02/07/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.