Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive
  • Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks
  • Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects
  • Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes
  • The Hydrogen Heating Mirage: Why Germany’s “H₂-Ready” Promise Risks Locking in High Costs and Low Returns
  • How Lyten’s Salvage Mission Could Upend Europe’s Battery Wars
  • Doug Wicks on Why Energy Innovation Is Broken—and How to Fix It
  • Cost and Policy Roadblocks Stall LEAG’s H2UB Boxberg Green Hydrogen Hub
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Green Hydrogen H2 News

Bacterial enzyme generates energy from atmospheric hydrogen

Anela DoksoBy Anela Dokso03/04/20233 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

Applications like affordable and effective hydrogen fuel cells could benefit from an enzyme that catalytically transforms the hydrogen found in air into energy.

Unlike all other hydrogen-oxidizing catalysts, including platinum, the enzyme, which Australian researchers at Monash University in Australia were able to extract from a bacterium, is also not sensitive to oxygen.

Study team leader Chris Greening adds, “The hydrogenase enzyme, termed Huc, has such a high affinity for hydrogen that it is able to oxidise atmospheric amounts of hydrogen.” This is in contrast to all currently understood hydrogen-oxidizing catalysts, which are unable to consume hydrogen at ambient levels.

Since Greening’s PhD dissertation, or about nine years ago, the Monash team has been researching Huc. He was investigating with his colleagues how Mycobacterium smegmatis may endure for years without any organic food sources. According to Greening, this research resulted in the startling revelation that the bacterium actually survives on air.

In particular, in nutrient-poor environments like Antarctic soils, volcano craters, and the deep ocean, atmospheric hydrogen provides a reliable lifeline for the survival of many microorganisms. Atmospheric hydrogen is a ubiquitous, diffusible, and powerful energy source. Nevertheless, until today, the scientists were unsure of how the bacteria took use of the minute amounts of hydrogen in the air.

In the latest research, Greening and associates removed Huc from M. smegmatis. They demonstrated that Huc converts minute concentrations of H2 gas into electrical current with extraordinary efficiency while being insensitive to oxygen (which typically acts as a “poison” for hydrogen-oxidizing catalysts) by using advanced microscopy techniques like cryo-electron microscopy to determine its atomic structure and electric pathways, as well as by using electrochemistry. This is accomplished by combining the oxidation of ambient H2 with the hydrogenation of the respiratory electron transporter menaquinone. Narrow hydrophobic gas channels are then used to specifically bind the H2 while displacing the O2.

Huc is resistant to heat and can withstand temperatures of up to 80°C without losing its ability to produce energy. Because of this, it can endure the most difficult circumstances. Furthermore, Huc-producing bacteria are widespread, providing researchers with easy access to a reliable source of the enzyme.

The researchers say there is a lot of promise for this enzyme to be utilised as the foundation for hydrogen fuel cells, and they describe their discovery in Nature. Also, they speculate that the enzyme may have some uses in air-powered devices because it actually gathers energy from the air.

Share. LinkedIn Twitter Facebook Email

Related Posts

BESS

Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks

02/07/2025
hydrogen

Cost Pressures Topple Queensland’s $12.5 Billion CQ‑H2 Green Hydrogen Project

01/07/2025
Sodium-Ion

Sodium-Ion Batteries Gain Ground as Lithium Costs and Supply Risks Reshape Storage Markets

30/06/2025
Hydrogen

Japan Reimagines Internal Combustion with Hydrogen and Bioethanol

27/06/2025
Hydrogen

South Korea’s Largest Hydrogen-Only Fuel Cell Plant Begins Operation in Ulsan

25/06/2025
ABS Grants Design Approval to HD Hyundai’s Offshore Floating Nuclear Power Concept

ABS Grants Design Approval to HD Hyundai’s Offshore Floating Nuclear Power Concept

23/06/2025
Hydrogen

EU–China Energy Diplomacy Amid German Hydrogen Retrenchment: A Deep Dive

02/07/2025
BESS

Merredin BESS Secures $220M Financing but Pays Premium over Global Battery Cost Benchmarks

02/07/2025
hydrogen

Brazil Stakes Claim in Global Hydrogen Race with €1.3B Investment in Uberaba and Açu Projects

02/07/2025
Hydrogen

Bremen Project Collapse Reveals Fragile Economics Behind Germany’s Green Hydrogen Hopes

02/07/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.