Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project
  • Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One
  • TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon
  • NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions
  • Yunnan’s Baochi Energy Storage Station Pioneers Grid-Forming Sodium-Ion Battery System
  • Why Physics Dooms the “Green Hydrogen” Fuel Dream
  • NEOM Green Hydrogen Project 80% Completed
  • Green Hydrogen – Pillar of European Industrial Policy but Not Without Challenges
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Research
Green Hydrogen H2 News

MIT Engineers Pioneer Solar-Powered Hydrogen Production

Anela DoksoBy Anela Dokso17/10/20234 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

MIT engineers are on the verge of a clean energy breakthrough that could revolutionize hydrogen production and help eliminate the dependence on fossil fuels.

Their innovative reactor system, reminiscent of a train, relies solely on solar energy to produce hydrogen through a process known as “solar thermochemical hydrogen” (STCH). This sustainable method harnesses the sun’s heat to split water directly, resulting in a clean, eco-friendly fuel source for long-distance transportation without greenhouse gas emissions.

Hydrogen production has long been entangled with the fossil fuel industry, dampening its green potential. The emergence of STCH presents a promising alternative, powered exclusively by renewable solar energy. However, current STCH designs are inefficient, utilizing only 7% of incoming sunlight, which translates to low yields and high costs. In their quest for solar-based fuels, the MIT engineering team envisions their design capturing a remarkable 40% of solar thermal energy, which would significantly enhance hydrogen output. This heightened efficiency is the key to making STCH a scalable and cost-effective solution for the decarbonization of transportation.

Ahmed Ghoniem, lead author and MIT’s Ronald C. Crane Professor of Mechanical Engineering, firmly believes that hydrogen is the future of clean fuel. Their objective aligns with the Department of Energy’s ambitious goal: achieving green hydrogen at a cost of $1 per kilogram by 2030. To realize this vision, maximizing solar energy utilization in hydrogen production is crucial.

The proposed system, resembling other conceptual designs, seamlessly integrates with established solar heat sources, such as concentrated solar plants (CSP), characterized by an array of mirrors directing sunlight toward a central tower. The STCH system harnesses the heat generated by the tower and employs it in the water-splitting process. This approach distinguishes STCH from electrolysis, which relies on electricity for water separation.

At the core of the STCH system lies a two-step thermochemical reaction. Initially, water vapor interacts with a metal, leading to the extraction of oxygen from the vapor and leaving behind pure hydrogen. This metal “oxidation” process resembles iron rusting in water but is significantly faster. After isolating the hydrogen, the oxidized metal undergoes a reheating process within a vacuum, effectively reversing the rusting and rejuvenating the metal. Devoid of oxygen, the metal cools down and re-engages with steam, facilitating continuous hydrogen production, which can be repeated numerous times.

The system optimizes this process with a circular track housing rectangular reactors encircling a solar thermal source, much like a CSP tower. Each reactor is dedicated to the metal’s redox process. These reactors experience high temperatures in direct sunlight, reaching up to 1,500 degrees Celsius, enabling them to extract oxygen and reduce the metal. Subsequently, they transition to a lower-temperature station, around 1,000 degrees Celsius, where steam triggers hydrogen production.

Efficient management of cooling heat and energy consumption in large-scale hydrogen production is addressed through the use of thermal radiation for heat exchange between reactors along a circular track. This design effectively eliminates the need for energy-intensive pumps by employing lower-temperature reactors to extract oxygen and reverse oxidation, ensuring a continuous supply of hydrogen and oxygen.

This groundbreaking design significantly enhances the efficiency of solar thermochemical hydrogen production, soaring from a mere 7% in previous designs to an impressive 40%. Christopher Muhich, a chemical engineering professor at Arizona State University, sees this innovation as a potential game-changer for achieving continuous hydrogen production, a crucial step in converting sunlight into liquid fuels.

Over the next year, the MIT engineering team plans to construct and test a prototype at the Department of Energy’s concentrated solar power facilities, which serves as their primary source of funding. The vision is to create a modular system housed within a compact structure amidst a solar field, with multiple “trains,” each containing approximately 50 reactors. The beauty of this design lies in its scalability, allowing for the straightforward addition of extra reactors to enhance hydrogen production.

Share. LinkedIn Twitter Facebook Email

Related Posts

NuScale's NRC Approval Sets Stage for America's Next Generation SMR Power Solutions

NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions

04/06/2025
Hydrogen

Why Physics Dooms the “Green Hydrogen” Fuel Dream

03/06/2025
Plug Power's Georgia Plant Sets Record in U.S. Hydrogen Production Milestone

Plug Power’s Georgia Plant Sets Record in U.S. Hydrogen Production Milestone

03/06/2025
Nickel

DOE Terminates $3.7B in Clean Energy Awards, Citing Economic Viability and Security Concerns

02/06/2025
hydrogen

GIZ and Acciona Launch Frontera Green Hydrogen Project for Chile and Germany

29/05/2025
nuclear

Nuclear Energy’s Long Game: Alistair Miller on Bridging Climate Gaps Amidst Short-Termism

26/05/2025
Thyssenkrupp

Thyssenkrupp Nucera Advances 600-MW Green Hydrogen Project

04/06/2025
Hydrogen

Ineratec Launches Europe’s Largest Green Hydrogen E-Fuels Plant, Era One

04/06/2025
TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

TotalEnergies Acquires Solar and Battery Storage Pipeline from Low Carbon

04/06/2025
NuScale's NRC Approval Sets Stage for America's Next Generation SMR Power Solutions

NuScale’s NRC Approval Sets Stage for America’s Next Generation SMR Power Solutions

04/06/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.