Close Menu
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
LinkedIn X (Twitter) YouTube Facebook
Trending
  • Hy24 Joins Hynamics UK to Back £300M Green Hydrogen Project at ExxonMobil’s Fawley Complex
  • Primary Hydrogen Advances Natural Hydrogen Exploration in Atlantic Canada
  • Legal Challenge Halts Brazil’s Coastal Hydrogen Project Over Environmental Violations
  • Hyundai Bets on Indian Hydrogen Ecosystem with New R&D Hub at IIT Madras
  • Falling Capture Rates and Rising Volatility Reshape Investment in European Power Markets
  • Why Most Hydrogen Research Will Never Scale—and How Balkan Labs Are Quietly Changing the Game
  • E.ON Cancels 20MW Hydrogen Plant in Essen
  • Repsol Abandons 130MW Hydrogen Project in Puertollano Amid Economic and Technical Concerns
LinkedIn X (Twitter) YouTube Facebook
Energy NewsEnergy News
  • NEWS
    • Breaking News
    • Hydrogen
    • Energy Storage
    • Grid
    • SMR
    • Projects
    • Production
    • Transport
    • Research
  • SPOTLIGHT
    • Interviews
    • Face 2 Face
    • Podcast
    • Webinars
    • Analysis
    • Columnists
    • Reviews
    • Events
  • REGIONAL
    • Africa
    • Americas
    • Asia
    • Europe
    • Middle east
    • Pacific
  • COMMUNITY
  • ABOUT
    • Advisory Board
    • Contact us
    • Report Your News
    • Advertize
    • Subscribe
Energy NewsEnergy News
Home Home - Pacific
hydrogen

Tohoku University’s Innovative Approach to Hydrogen Dynamics

Anela DoksoBy Anela Dokso17/01/20242 Mins Read
Share
LinkedIn Twitter Facebook Email WhatsApp Telegram

To achieve the ambitious goals of a hydrogen society, understanding how hydrogen interacts with materials is crucial.

Overcoming the limitations of existing observation methods, Assistant Professor Hiroshi Kakinuma and his team at Tohoku University’s Institute of Materials Research have introduced a cost-effective technique to capture dynamic images of hydrogen flow within metals. This revolutionary method employs polyaniline, a color-changing polymer, and a standard optical microscope, offering unprecedented spatial and temporal resolutions.

Polyaniline, undergoing color changes in response to hydrogen, facilitates the visualization of hydrogen distribution in metals. The optical microscope, coupled with this polymer, allows for micro-scale videos across a broad sub-millimeter field. This surpasses traditional methods, enabling a comprehensive view of hydrogen behavior with superior resolutions.

In a study focusing on pure nickel foil, hydrogen diffusion was tracked. Concentration gradients propelled hydrogen through the foil, reaching the side coated with polyaniline. The color shift from purple to white in polyaniline, observable through the microscope, provided insights into hydrogen movement within nickel. Remarkably, it was unveiled that hydrogen predominantly diffused through crystal grain boundaries, emphasizing the influence of nickel atom arrangements.

The research highlighted variations in hydrogen diffusion based on crystal grain boundary types. The study indicated that hydrogen atom movement in pure nickel correlates with the arrangement of nickel atoms. Larger geometric spaces in grain boundaries facilitate increased hydrogen flow. This groundbreaking insight establishes a link between atomic-level structural features of metals and hydrogen behavior.

The newly developed hydrogen observation method is versatile, applicable to any metal. This breakthrough promises to experimentally unveil the intricate relationship between various metals’ structures and hydrogen behavior, moving beyond theoretical simulations. Understanding the causal link between atomic-level metal structures and microscale hydrogen dynamics opens avenues for efficient material design.

Share. LinkedIn Twitter Facebook Email

Related Posts

hydrogen

South Korea Backs Biogas-to-Hydrogen Push as Utility and Kunwha E&C Partner on Carbon-Negative Projects

07/07/2025
China Approves First Cross-Provincial Green Hydrogen Pipeline

China Approves First Cross-Provincial Green Hydrogen Pipeline

04/07/2025
Green Hydrogen

Australia Bets on Green Hydrogen Revival with $284M Investment in Orica’s Hunter Valley Hub

04/07/2025
Hydrogen

Indonesia Taps ACWA Power and Pertamina for $10B Green Hydrogen and Desalination Push

04/07/2025
EV Honda

Honda’s Hydrogen Ambitions Stall as FCEV Uptake Falters

03/07/2025
Hydrogen

Gold Hydrogen Secures A$14.5 Million to Accelerate South Australia Drilling

03/07/2025
Hy24 Joins Hynamics UK to Back £300M Green Hydrogen Project at ExxonMobil's Fawley Complex

Hy24 Joins Hynamics UK to Back £300M Green Hydrogen Project at ExxonMobil’s Fawley Complex

09/07/2025
Hydrogen

Primary Hydrogen Advances Natural Hydrogen Exploration in Atlantic Canada

09/07/2025
Legal Challenge Halts Brazil’s Coastal Hydrogen Project Over Environmental Violations

Legal Challenge Halts Brazil’s Coastal Hydrogen Project Over Environmental Violations

09/07/2025
Hyundai Hydrogen

Hyundai Bets on Indian Hydrogen Ecosystem with New R&D Hub at IIT Madras

09/07/2025

Subscribe to Updates

Get the latest news from the hydrogen market subscribe to our newsletter.

LinkedIn X (Twitter) Facebook YouTube

News

  • Inteviews
  • Webinars
  • Hydrogen
  • Spotlight
  • Regional

Company

  • Advertising
  • Media Kits
  • Contact Info
  • GDPR Policy

Subscriptions

  • Subscribe
  • Newsletters
  • Sponsored News

Subscribe to Updates

Get the latest news from EnergyNewsBiz about hydrogen.

© 2025 EnergyNews.biz
  • Privacy Policy
  • Terms
  • Accessibility

Type above and press Enter to search. Press Esc to cancel.